At the bottom edge of a smooth wall, an inclined plane is kept at an angle of 45°. A uniform ladder of length ℓ and mass M rests on the inclined plane against the wall such that it is perpendicular to the incline.

- a. If the plane is also smooth, which way will the ladder slide?
- b. What is the minimum coefficient of friction necessary so that the ladder does not slip on the incline.

Solution:

- a. The ladder has tendency to slip by rotating clockwise about the point A
- b. The free-body diagram of the ladder is shown is fig.

Balacing torque about point A, $f\ell = Mg\left(\frac{\ell}{2}\sin 45^\circ\right)$

$$\therefore f = \frac{Mg}{2\sqrt{2}} \qquad \dots (i)$$

Balancing forces in the vertical direction,

$$Mg = R_2 \cos 45^\circ + f \sin 45^\circ$$
 ...(ii)

From Eqs. (i) and (ii), we get

$$R_2 = \frac{3Mg}{2\sqrt{2}}$$

As,
$$f = \mu R_2$$

or
$$\frac{Mg}{2\sqrt{2}} = \frac{3Mg}{2\sqrt{2}}\mu$$
 or $\mu = \frac{1}{3}$